Craving is a core feature of substance use disorders. It is a strong predictor of substance use and relapse and is linked to overeating, gambling, and other maladaptive behaviors. Craving is measured via self-report, which is limited by introspective access and sociocultural contexts. Neurobiological markers of craving are both needed and lacking, and it remains unclear whether craving for drugs and food involve similar mechanisms. Across three functional magnetic resonance imaging studies (nā=ā99), we used machine learning to identify a cross-validated neuromarker that predicts self-reported intensity of cue-induced drug and food craving (Pā<ā0.0002). This pattern, which we term the Neurobiological Craving Signature (NCS), includes ventromedial prefrontal and cingulate cortices, ventral striatum, temporal/parietal association areas, mediodorsal thalamus and cerebellum. Importantly, NCS responses to drug versus food cues discriminate drug users versus non-users with 82% accuracy. The NCS is also modulated by a self-regulation strategy. Transfer between separate neuromarkers for drug and food craving suggests shared neurobiological mechanisms. Future studies can assess the discriminant and convergent validity of the NCS and test whether it responds to clinical interventions and predicts long-term clinical outcomes.
Nature Neuroscience.
2022:1-10. doi: 10.1038/s41593-022-01228-w
Keywords
Library Collection(s)