bias

1.
Stefanie Schneider, Cat Morgan, Clayton Magill, Marion Hersh, Katherine Sang, Robert MacIntosh. Evidence Review: Peer Review Bias in the Funding Process: Main Themes and Interventions. Edinburgh: Heriot-Watt University; 2024. https://doi.org/10.17861/YDDH-B137.
View Full Reference
1.
Olivia M. Smith, Kayla L. Davis, Robin Waterman, et al. Journals must expand access to peer review data. Trends in Ecology & Evolution. 2024;39(4):311-314. doi:10.1016/j.tree.2024.02.003
View Full Reference
1.
The RIVER working group. Reporting In Vitro Experiments Responsibly – the RIVER Recommendations.; 2023. doi:10.31222/osf.io/x6aut
View Full Reference
1.
Stephen Burgess, Amy M. Mason, Andrew J. Grant, et al. Using genetic association data to guide drug discovery and development: Review of methods and applications. American Journal of Human Genetics. 2023;110(2):195-214. doi:10.1016/j.ajhg.2022.12.017
View Full Reference
1.
Paul Whaley, Thomas Piggott, Rebecca L. Morgan, et al. Biological plausibility in environmental health systematic reviews: a GRADE concept paper. Journal of Clinical Epidemiology. 2022;146:32-46. doi:10.1016/j.jclinepi.2022.02.011
View Full Reference
1.
Geoff Frampton, Paul Whaley, Micah Bennett, et al. Principles and framework for assessing the risk of bias for studies included in comparative quantitative environmental systematic reviews. Environmental Evidence. 2022;11:12. doi:10.1186/s13750-022-00264-0
View Full Reference
1.
Stephen A. Gallo, Karen B. Schmaling, Lisa A. Thompson, Scott R. Glisson. Grant reviewer perceptions of the quality, effectiveness, and influence of panel discussion. Research Integrity and Peer Review. 2020;5(1):7. doi:10.1186/s41073-020-00093-0
View Full Reference
1.
Talia H. Swartz, Ann-Gel S. Palermo, Sandra K. Masur, Judith A. Aberg. The Science and Value of Diversity: Closing the Gaps in Our Understanding of Inclusion and Diversity. The Journal of Infectious Diseases. 2019;220(S2):S33-S41. doi:10.1093/infdis/jiz174
View Full Reference
1.
Susan Guthrie, Daniela Rodriguez Rincon, Gordon McInroy, Becky Ioppolo, Salil Gunashekar. Measuring bias, burden and conservatism in research funding processes. F1000Research. 2019;8:851. doi:10.12688/f1000research.19156.1
View Full Reference
1.
Susan Bridgwood Green. Can animal data translate to innovations necessary for a new era of patient-centred and individualised healthcare? Bias in preclinical animal research. BMC Medical Ethics. 2015;16:53. doi:10.1186/s12910-015-0043-7
View Full Reference