Mosha Abulaiti, Yaxiaer Yalikun, Kozue Murata, et al. Establishment of a heart-on-a-chip microdevice based on human iPS cells for the evaluation of human heart tissue function. Scientific Reports. 2020;10(1):19201. doi:10.1038/s41598-020-76062-w
Riccardo Barrile, Andries D. van der Meer, Hyoungshin Park, et al. Organ-on-Chip Recapitulates Thrombosis Induced by an anti-CD154 Monoclonal Antibody: Translational Potential of Advanced Microengineered Systems. Clinical Pharmacology and Therapeutics. 2018;104(6):1240-1248. doi:10.1002/cpt.1054
Barry Fine, Gordana Vunjak-Novakovic. Shortcomings of Animal Models and the Rise of Engineered Human Cardiac Tissue. ACS Biomaterials Science & Engineering. 2017;3(9):1884-1897. doi:10.1021/acsbiomaterials.6b00662
C. G. dos Remedios, S. P. Lal, A. Li, et al. The Sydney Heart Bank: improving translational research while eliminating or reducing the use of animal models of human heart disease. Biophysical Reviews. 2017;9(4):431-441. doi:10.1007/s12551-017-0305-3
Moran Yadid, Mario Hagel, Megan Beldjilali Labro, et al. A Platform for Assessing Cellular Contractile Function Based on Magnetic Manipulation of Magnetoresponsive Hydrogel Films. Advanced Science.:2207498. doi:10.1002/advs.202207498
Bryan A. Hassell, Girija Goyal, Esak Lee, et al. Human Organ Chip Models Recapitulate Orthotopic Lung Cancer Growth, Therapeutic Responses, and Tumor Dormancy In Vitro. Cell Reports. 21(2):508-516. doi:10.1016/j.celrep.2017.09.043
Anna Herland, Ben M. Maoz, Debarun Das, et al. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nature Biomedical Engineering. 4(4):421-436. doi:10.1038/s41551-019-0498-9
Richard Novak, Miles Ingram, Susan Marquez, et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nature Biomedical Engineering. 4(4):407-420. doi:10.1038/s41551-019-0497-x