TY - JOUR AU - Longlong Si AU - Haiqing Bai AU - Crystal Yuri Oh AU - Lei Jin AU - Rachelle Prantil-Baun AU - Donald E. Ingber AU - Heba H. Mostafa AB - Human-to-human transmission of viruses, such as influenza viruses and coronaviruses, can promote virus evolution and the emergence of new strains with increased potential for creating pandemics. Clinical studies analyzing how a particular type of virus progressively evolves new traits, such as resistance to antiviral therapies, as a result of passing between different human hosts are difficult to carry out because of the complexity, scale, and cost of the challenge. Here, we demonstrate that spontaneous evolution of influenza A virus through both mutation and gene reassortment can be reconstituted in vitro by sequentially passaging infected mucus droplets between multiple human lung airway-on-a-chip microfluidic culture devices (airway chips). Modeling human-tohuman transmission of influenza virus infection on chips in the continued presence of the antiviral drugs amantadine or oseltamivir led to the spontaneous emergence of clinically prevalent resistance mutations, and strains that were resistant to both drugs were identified when they were administered in combination. In contrast, we found that nafamostat, an inhibitor targeting host serine proteases, did not induce viral resistance. This human preclinical model may be useful for studying viral evolution in vitro and identifying potential influenza virus variants before they appear in human populations, thereby enabling preemptive design of new and more effective vaccines and therapeutics. BT - Microbiology Spectrum DA - 2021-10-31 DO - 10.1128/Spectrum.00257-21 IS - 2 LA - en N2 - Human-to-human transmission of viruses, such as influenza viruses and coronaviruses, can promote virus evolution and the emergence of new strains with increased potential for creating pandemics. Clinical studies analyzing how a particular type of virus progressively evolves new traits, such as resistance to antiviral therapies, as a result of passing between different human hosts are difficult to carry out because of the complexity, scale, and cost of the challenge. Here, we demonstrate that spontaneous evolution of influenza A virus through both mutation and gene reassortment can be reconstituted in vitro by sequentially passaging infected mucus droplets between multiple human lung airway-on-a-chip microfluidic culture devices (airway chips). Modeling human-tohuman transmission of influenza virus infection on chips in the continued presence of the antiviral drugs amantadine or oseltamivir led to the spontaneous emergence of clinically prevalent resistance mutations, and strains that were resistant to both drugs were identified when they were administered in combination. In contrast, we found that nafamostat, an inhibitor targeting host serine proteases, did not induce viral resistance. This human preclinical model may be useful for studying viral evolution in vitro and identifying potential influenza virus variants before they appear in human populations, thereby enabling preemptive design of new and more effective vaccines and therapeutics. PY - 2021 SP - e00257 EP - 21 T2 - Microbiology Spectrum TI - Clinically Relevant Influenza Virus Evolution Reconstituted in a Human Lung Airway-on-a-Chip UR - https://journals.asm.org/doi/10.1128/Spectrum.00257-21 VL - 9 Y2 - 2022-10-13 SN - 2165-0497 ER -