TY - JOUR KW - Alzheimer's disease KW - Cellular neuroscience KW - Epigenomics KW - Gene expression AU - Mariano I. Gabitto AU - Kyle J. Travaglini AU - Victoria M. Rachleff AU - Eitan S. Kaplan AU - Brian Long AU - Jeanelle Ariza AU - Yi Ding AU - Joseph T. Mahoney AU - Nick Dee AU - Jeff Goldy AU - Erica J. Melief AU - Anamika Agrawal AU - Omar Kana AU - Xingjian Zhen AU - Samuel T. Barlow AU - Krissy Brouner AU - Jazmin Campos AU - John Campos AU - Ambrose J. Carr AU - Tamara Casper AU - Rushil Chakrabarty AU - Michael Clark AU - Jonah Cool AU - Rachel Dalley AU - Martin Darvas AU - Song-Lin Ding AU - Tim Dolbeare AU - Tom Egdorf AU - Luke Esposito AU - Rebecca Ferrer AU - Lynn E. Fleckenstein AU - Rohan Gala AU - Amanda Gary AU - Emily Gelfand AU - Jessica Gloe AU - Nathan Guilford AU - Junitta Guzman AU - Daniel Hirschstein AU - Windy Ho AU - Madison Hupp AU - Tim Jarsky AU - Nelson Johansen AU - Brian E. Kalmbach AU - Lisa M. Keene AU - Sarah Khawand AU - Mitchell D. Kilgore AU - Amanda Kirkland AU - Michael Kunst AU - Brian R. Lee AU - Mckaila Leytze AU - Christine L. Mac Donald AU - Jocelin Malone AU - Zoe Maltzer AU - Naomi Martin AU - Rachel McCue AU - Delissa McMillen AU - Gonzalo Mena AU - Emma Meyerdierks AU - Kelly P. Meyers AU - Tyler Mollenkopf AU - Mark Montine AU - Amber L. Nolan AU - Julie K. Nyhus AU - Paul A. Olsen AU - Maiya Pacleb AU - Chelsea M. Pagan AU - Nicholas Peña AU - Trangthanh Pham AU - Christina Alice Pom AU - Nadia Postupna AU - Christine Rimorin AU - Augustin Ruiz AU - Giuseppe A. Saldi AU - Aimee M. Schantz AU - Nadiya V. Shapovalova AU - Staci A. Sorensen AU - Brian Staats AU - Matt Sullivan AU - Susan M. Sunkin AU - Carol Thompson AU - Michael Tieu AU - Jonathan T. Ting AU - Amy Torkelson AU - Tracy Tran AU - Nasmil J. Valera Cuevas AU - Sarah Walling-Bell AU - Ming-Qiang Wang AU - Jack Waters AU - Angela M. Wilson AU - Ming Xiao AU - David Haynor AU - Nicole M. Gatto AU - Suman Jayadev AU - Shoaib Mufti AU - Lydia Ng AU - Shubhabrata Mukherjee AU - Paul K. Crane AU - Caitlin S. Latimer AU - Boaz P. Levi AU - Kimberly A. Smith AU - Jennie L. Close AU - Jeremy A. Miller AU - Rebecca D. Hodge AU - Eric B. Larson AU - Thomas J. Grabowski AU - Michael Hawrylycz AU - C. Dirk Keene AU - Ed S. Lein AB - Alzheimer’s disease (AD) is the leading cause of dementia in older adults. Although AD progression is characterized by stereotyped accumulation of proteinopathies, the affected cellular populations remain understudied. Here we use multiomics, spatial genomics and reference atlases from the BRAIN Initiative to study middle temporal gyrus cell types in 84 donors with varying AD pathologies. This cohort includes 33 male donors and 51 female donors, with an average age at time of death of 88 years. We used quantitative neuropathology to place donors along a disease pseudoprogression score. Pseudoprogression analysis revealed two disease phases: an early phase with a slow increase in pathology, presence of inflammatory microglia, reactive astrocytes, loss of somatostatin+ inhibitory neurons, and a remyelination response by oligodendrocyte precursor cells; and a later phase with exponential increase in pathology, loss of excitatory neurons and Pvalb+ and Vip+ inhibitory neuron subtypes. These findings were replicated in other major AD studies. BT - Nature Neuroscience DA - 2024-12 DO - 10.1038/s41593-024-01774-5 IS - 12 LA - en N2 - Alzheimer’s disease (AD) is the leading cause of dementia in older adults. Although AD progression is characterized by stereotyped accumulation of proteinopathies, the affected cellular populations remain understudied. Here we use multiomics, spatial genomics and reference atlases from the BRAIN Initiative to study middle temporal gyrus cell types in 84 donors with varying AD pathologies. This cohort includes 33 male donors and 51 female donors, with an average age at time of death of 88 years. We used quantitative neuropathology to place donors along a disease pseudoprogression score. Pseudoprogression analysis revealed two disease phases: an early phase with a slow increase in pathology, presence of inflammatory microglia, reactive astrocytes, loss of somatostatin+ inhibitory neurons, and a remyelination response by oligodendrocyte precursor cells; and a later phase with exponential increase in pathology, loss of excitatory neurons and Pvalb+ and Vip+ inhibitory neuron subtypes. These findings were replicated in other major AD studies. PY - 2024 SP - 2366 EP - 2383 T2 - Nature Neuroscience TI - Integrated multimodal cell atlas of Alzheimer’s disease UR - https://www.nature.com/articles/s41593-024-01774-5 VL - 27 Y2 - 2024-12-30 SN - 1546-1726 ER -