TY - JOUR KW - Alzheimer disease (AD) KW - Blood–brain barrier (BBB) KW - Gold nanoparticles KW - organ-on-a-chip (OoC) KW - Trans-endothelial electrical resistance (TEER) AU - Sujey Palma-Florez AU - Adrián López-Canosa AU - Francisco Moralez-Zavala AU - Oscar Castaño AU - Marcelo J. Kogan AU - Josep Samitier AU - Anna Lagunas AU - Mònica Mir AB - The lack of predictive models that mimic the blood–brain barrier (BBB) hinders the development of effective drugs for neurodegenerative diseases. Animal models behave differently from humans, are expensive and have ethical constraints. Organ-on-a-chip (OoC) platforms offer several advantages to resembling physiological and pathological conditions in a versatile, reproducible, and animal-free manner. In addition, OoC give us the possibility to incorporate sensors to determine cell culture features such as trans-endothelial electrical resistance (TEER). Here, we developed a BBB-on-a-chip (BBB-oC) platform with a TEER measurement system in close distance to the barrier used for the first time for the evaluation of the permeability performance of targeted gold nanorods for theranostics of Alzheimer’s disease. GNR-PEG-Ang2/D1 is a therapeutic nanosystem previously developed by us consisting of gold nanorods (GNR) functionalized with polyethylene glycol (PEG), angiopep-2 peptide (Ang2) to overcome the BBB and the D1 peptide as beta amyloid fibrillation inhibitor, finally obtaining GNR-PEG-Ang2/D1 which showed to be useful for disaggregation of the amyloid in in vitro and in vivo models. In this work, we evaluated its cytotoxicity, permeability, and some indications of its impact on the brain endothelium by employing an animal-free device based on neurovascular human cells. BT - Journal of Nanobiotechnology DA - 2023-03-29 DO - 10.1186/s12951-023-01798-2 N2 - The lack of predictive models that mimic the blood–brain barrier (BBB) hinders the development of effective drugs for neurodegenerative diseases. Animal models behave differently from humans, are expensive and have ethical constraints. Organ-on-a-chip (OoC) platforms offer several advantages to resembling physiological and pathological conditions in a versatile, reproducible, and animal-free manner. In addition, OoC give us the possibility to incorporate sensors to determine cell culture features such as trans-endothelial electrical resistance (TEER). Here, we developed a BBB-on-a-chip (BBB-oC) platform with a TEER measurement system in close distance to the barrier used for the first time for the evaluation of the permeability performance of targeted gold nanorods for theranostics of Alzheimer’s disease. GNR-PEG-Ang2/D1 is a therapeutic nanosystem previously developed by us consisting of gold nanorods (GNR) functionalized with polyethylene glycol (PEG), angiopep-2 peptide (Ang2) to overcome the BBB and the D1 peptide as beta amyloid fibrillation inhibitor, finally obtaining GNR-PEG-Ang2/D1 which showed to be useful for disaggregation of the amyloid in in vitro and in vivo models. In this work, we evaluated its cytotoxicity, permeability, and some indications of its impact on the brain endothelium by employing an animal-free device based on neurovascular human cells. PY - 2023 EP - 115 T2 - Journal of Nanobiotechnology TI - BBB-on-a-chip with integrated micro-TEER for permeability evaluation of multi-functionalized gold nanorods against Alzheimer’s disease UR - https://doi.org/10.1186/s12951-023-01798-2 VL - 21 Y2 - 2024-08-13 SN - 1477-3155 ER -