TY - JOUR KW - COVID-19 KW - Humans KW - Lung KW - Lung Neoplasms KW - Macrophages KW - Pulmonary Fibrosis AU - Lisa Sikkema AU - Ciro Ramírez-Suástegui AU - Daniel C. Strobl AU - Tessa E. Gillett AU - Luke Zappia AU - Elo Madissoon AU - Nikolay S. Markov AU - Laure-Emmanuelle Zaragosi AU - Yuge Ji AU - Meshal Ansari AU - Marie-Jeanne Arguel AU - Leonie Apperloo AU - Martin Banchero AU - Christophe Bécavin AU - Marijn Berg AU - Evgeny Chichelnitskiy AU - Mei-I. Chung AU - Antoine Collin AU - Aurore C. A. Gay AU - Janine Gote-Schniering AU - Baharak Hooshiar Kashani AU - Kemal Inecik AU - Manu Jain AU - Theodore S. Kapellos AU - Tessa M. Kole AU - Sylvie Leroy AU - Christoph H. Mayr AU - Amanda J. Oliver AU - Michael von Papen AU - Lance Peter AU - Chase J. Taylor AU - Thomas Walzthoeni AU - Chuan Xu AU - Linh T. Bui AU - Carlo De Donno AU - Leander Dony AU - Alen Faiz AU - Minzhe Guo AU - Austin J. Gutierrez AU - Lukas Heumos AU - Ni Huang AU - Ignacio L. Ibarra AU - Nathan D. Jackson AU - Preetish Kadur Lakshminarasimha Murthy AU - Mohammad Lotfollahi AU - Tracy Tabib AU - Carlos Talavera-López AU - Kyle J. Travaglini AU - Anna Wilbrey-Clark AU - Kaylee B. Worlock AU - Masahiro Yoshida AU - Lung Biological Network Consortium AU - Maarten van den Berge AU - Yohan Bossé AU - Tushar J. Desai AU - Oliver Eickelberg AU - Naftali Kaminski AU - Mark A. Krasnow AU - Robert Lafyatis AU - Marko Z. Nikolić AU - Joseph E. Powell AU - Jayaraj Rajagopal AU - Mauricio Rojas AU - Orit Rozenblatt-Rosen AU - Max A. Seibold AU - Dean Sheppard AU - Douglas P. Shepherd AU - Don D. Sin AU - Wim Timens AU - Alexander M. Tsankov AU - Jeffrey Whitsett AU - Yan Xu AU - Nicholas E. Banovich AU - Pascal Barbry AU - Thu Elizabeth Duong AU - Christine S. Falk AU - Kerstin B. Meyer AU - Jonathan A. Kropski AU - Dana Pe'er AU - Herbert B. Schiller AU - Purushothama Rao Tata AU - Joachim L. Schultze AU - Sara A. Teichmann AU - Alexander V. Misharin AU - Martijn C. Nawijn AU - Malte D. Luecken AU - Fabian J. Theis AB - Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1+ profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas. BT - Nature Medicine DA - 2023-06 DO - 10.1038/s41591-023-02327-2 IS - 6 LA - eng N2 - Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1+ profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas. PY - 2023 SP - 1563 EP - 1577 T2 - Nature Medicine TI - An integrated cell atlas of the lung in health and disease VL - 29 SN - 1546-170X ER -