TY - JOUR KW - interdisciplinary training KW - organ-on-chip KW - training needs AU - Alessia Moruzzi AU - Tanvi Shroff AU - Silke Keller AU - Peter Loskill AU - Madalena Cipriano AB - Organ-on-chip (OoC) technology bridges the principles of biology and engineering to create a new generation of in vitro models and involves highly interdisciplinary collaboration across STEM disciplines. Training the next generation of scientists, technicians and policy makers is a challenge that requires a tailored effort. To promote the qualification, usability, uptake and long-term development of OoC technology, we designed a questionnaire to evaluate the key aspects for training, identify the major stakeholders to be trained, their professional level and specific skillset. The 151 respondents unanimously agreed on the need to train the next generation of OoC researchers and that the training should be provided early, in interdisciplinary subjects and throughout the researchers’ career. We identified two key training priorities: (i) training scientists with a biology background in microfabrication and microfluidics principles and (ii) training OoC developers in pharmacology/toxicology. This makes training in OoC a transdisciplinary challenge rather than an interdisciplinary one. The data acquired and analyzed here serves to guide training initiatives for preparing competent and transdisciplinary researchers, capable of assuring the successful development and application of OoC technologies in academic research, pharmaceutical/chemical/cosmetic industries, personalized medicine and clinical trials on chip. BT - Education Sciences DA - 2023/2 DO - 10.3390/educsci13020144 IS - 2 LA - en N2 - Organ-on-chip (OoC) technology bridges the principles of biology and engineering to create a new generation of in vitro models and involves highly interdisciplinary collaboration across STEM disciplines. Training the next generation of scientists, technicians and policy makers is a challenge that requires a tailored effort. To promote the qualification, usability, uptake and long-term development of OoC technology, we designed a questionnaire to evaluate the key aspects for training, identify the major stakeholders to be trained, their professional level and specific skillset. The 151 respondents unanimously agreed on the need to train the next generation of OoC researchers and that the training should be provided early, in interdisciplinary subjects and throughout the researchers’ career. We identified two key training priorities: (i) training scientists with a biology background in microfabrication and microfluidics principles and (ii) training OoC developers in pharmacology/toxicology. This makes training in OoC a transdisciplinary challenge rather than an interdisciplinary one. The data acquired and analyzed here serves to guide training initiatives for preparing competent and transdisciplinary researchers, capable of assuring the successful development and application of OoC technologies in academic research, pharmaceutical/chemical/cosmetic industries, personalized medicine and clinical trials on chip. PY - 2023 EP - 144 T2 - Education Sciences TI - Training the Next Generation of Researchers in the Organ-on-Chip Field UR - https://www.mdpi.com/2227-7102/13/2/144 VL - 13 Y2 - 2023-09-12 SN - 2227-7102 ER -