TY - JOUR AU - Aleksander Skardal AU - Julio Aleman AU - Steven Forsythe AU - Shiny Rajan AU - Sean Murphy AU - Mahesh Devarasetty AU - Nima Pourhabibi Zarandi AU - Goodwell Nzou AU - Robert Wicks AU - Hooman Sadri-Ardekani AU - Colin Bishop AU - Shay Soker AU - Adam Hall AU - Thomas Shupe AU - Anthony Atala AB - Current practices in drug development have led to therapeutic compounds being approved for widespread use in humans, only to be later withdrawn due to unanticipated toxicity. These occurrences are largely the result of erroneous data generated by in vivo and in vitro preclinical models that do not accurately recapitulate human physiology. Herein, a human primary cell- and stem cell-derived 3D organoid technology is employed to screen a panel of drugs that were recalled from market by the FDA. The platform is comprised of multiple tissue organoid types that remain viable for at least 28 days, in vitro. For many of these compounds, the 3D organoid system was able to demonstrate toxicity. Furthermore, organoids exposed to non-toxic compounds remained viable at clinically relevant doses. Additional experiments were performed on integrated multi-organoid systems containing liver, cardiac, lung, vascular, testis, colon, and brain. These integrated systems proved to maintain viability and expressed functional biomarkers, long-term. Examples are provided that demonstrate how multi-organoid ‘body-on-a-chip’ systems may be used to model the interdependent metabolism and downstream effects of drugs across multiple tissues in a single platform. Such 3D in vitro systems represent a more physiologically relevant model for drug screening and will likely reduce the cost and failure rate associated with the approval of new drugs. BT - Biofabrication DA - 2020-02 DO - 10.1088/1758-5090/ab6d36 IS - 2 LA - en N2 - Current practices in drug development have led to therapeutic compounds being approved for widespread use in humans, only to be later withdrawn due to unanticipated toxicity. These occurrences are largely the result of erroneous data generated by in vivo and in vitro preclinical models that do not accurately recapitulate human physiology. Herein, a human primary cell- and stem cell-derived 3D organoid technology is employed to screen a panel of drugs that were recalled from market by the FDA. The platform is comprised of multiple tissue organoid types that remain viable for at least 28 days, in vitro. For many of these compounds, the 3D organoid system was able to demonstrate toxicity. Furthermore, organoids exposed to non-toxic compounds remained viable at clinically relevant doses. Additional experiments were performed on integrated multi-organoid systems containing liver, cardiac, lung, vascular, testis, colon, and brain. These integrated systems proved to maintain viability and expressed functional biomarkers, long-term. Examples are provided that demonstrate how multi-organoid ‘body-on-a-chip’ systems may be used to model the interdependent metabolism and downstream effects of drugs across multiple tissues in a single platform. Such 3D in vitro systems represent a more physiologically relevant model for drug screening and will likely reduce the cost and failure rate associated with the approval of new drugs. PY - 2020 EP - 025017 T2 - Biofabrication TI - Drug compound screening in single and integrated multi-organoid body-on-a-chip systems UR - https://dx.doi.org/10.1088/1758-5090/ab6d36 VL - 12 Y2 - 2023-07-12 SN - 1758-5090 ER -