02234nas a2200517 4500000000100000000000100001008004100002260001500043653001400058653001400072653004000086653001800126653001500144100001400159700001600173700002100189700002300210700002300233700002800256700002000284700002000304700001900324700002300343700001800366700001700384700002200401700002700423700001800450700001400468700001400482700001800496700001700514700002000531700001500551700001800566700002000584700001300604700002500617700001200642245007000654856004700724300001200771490000700783520091200790022001401702 2024 d c2024/10/0110aBiomarker10aEducation10aImmune related adverse event - irAE10aImmunotherapy10astatistics1 aRiyue Bao1 aAlan Hutson1 aAnant Madabhushi1 aVanessa D. Jonsson1 aSpencer R. Rosario1 aJill S. Barnholtz-Sloan1 aElana J. Fertig1 aHimangi Marathe1 aLyndsay Harris1 aJennifer Altreuter1 aQingrong Chen1 aJames Dignam1 aAndrew J. Gentles1 aEdgar Gonzalez-Kozlova1 aSacha Gnjatic1 aErika Kim1 aMark Long1 aMartin Morgan1 aEytan Ruppin1 aDavid Van Valen1 aHong Zhang1 aNatalie Vokes1 aDaoud Meerzaman1 aSong Liu1 aEliezer M. Van Allen1 aYi Xing00aTen challenges and opportunities in computational immuno-oncology uhttps://jitc.bmj.com/content/12/10/e009721 ae0097210 v123 aImmuno-oncology has transformed the treatment of cancer, with several immunotherapies becoming the standard treatment across histologies. Despite these advancements, the majority of patients do not experience durable clinical benefits, highlighting the imperative for ongoing advancement in immuno-oncology. Computational immuno-oncology emerges as a forefront discipline that draws on biomedical data science and intersects with oncology, immunology, and clinical research, with the overarching goal to accelerate the development of effective and safe immuno-oncology treatments from the laboratory to the clinic. In this review, we outline 10 critical challenges and opportunities in computational immuno-oncology, emphasizing the importance of robust computational strategies and interdisciplinary collaborations amid the constantly evolving interplay between clinical needs and technological innovation. a2051-1426